Falcons team update

MSL workshop 2016 Kassel
Jaap Vos, Edwin Schreuder, Erik Kouters, Jan Feitsma
Content

- Team update
- Hardware
- Robustness
- Motion
- Reasoning (teamplay)
- WorldModel+vision
- BaseStation
- Simulator
Team update

• 4th position at European open
• 3rd position at Portuguese open
• 8th position at World Championships Leipzig.
• Team has about 30 team members both on tech and non tech.
• All work is done in the evening hours, mostly Tuesday and Thursday evening.
• Based on spent hours we have about 4.45 FTE.
• 90% of the current workload is now on Software
• Started new activity: robot test and integration to test the robots on pre-defined KPI’s
• Monthly test match against VDL
Hardware updates 2016

• Improved motor board communication via USB and USB hubs i.s.o. RS-485-RS-232.
• Due to unexpected current loops and erroneous communication, had to build in USB isolators.
• Compass issues with new compass, revert back to old compass.
• Added front facing camera for the goalkeeper to enhance vision.
• New ball handler arms with wider capture angle.
Upcoming new hardware

- Front facing camera’s on all robots
- New, improved ball handle angle encoders
- Increased shooting power
- Improved shooting lever.
- Moving keeper frame.
- Working on new platform with new CPU box, Beagle Bone Black, Motor drivers, and new motors and vision system.
Robustness (problem)

- USB connectivity unstable (ground loops, usb re-enumeration)
- USB serial ports would disappear/reappear in OS.
- Hardware abstraction layer not able to cope.
- Insufficient diagnostics and code maintenance difficult.

Effect:
- Erratic / no movement
- Reboot of driver/system necessary
Robustness (solution)

• Partial rewrite of current HAL.
• Robust for device reboots/hickups/emergency button.
• More diagnostics for errors to visualizer.

• Easier to extend and less resource intensive
Motion (problem)

• KPI’s have shown inaccurate motion
 – “Banana”-shaped movement
 – Robot velocity does not reach desired setpoint
 – Deviation in velocity in Y direction is higher than in X direction
Motion

- Position -> Velocity (PID)

- RCS Velocity -> Velocity per motor
 \[3x3\] matrix \((\dot{x}, \dot{y}, \dot{\theta} \rightarrow \omega_{Left}, \omega_{Right}, \omega_{Rear})\)

- Velocity -> Motor current (PID)
Motion (solution?)

- PID tuning motor boards

- Suspected errors in RCS conversion matrix
 - Initial measurements show matrix is (partially) incorrect
 - Matrix deviating between robots?

- Different PID settings for different setpoints / mode of operation (gain scheduling)?
Reasoning (teamplay)

• First version intended for our first steps
 – Difficult to maintain
 – Difficult to debug

• Second version intended for longer use
 – Behavior and code fully separated
 – No recompile necessary -> realtime tactics update possible
 – Dynamic role assignment of robots
Reasoning (teamplay) GUI
Worldmodel + Vision

• Leipzig:
 – major troubles with Compass
 – poor ball tracking
• ➔ decide to redesign worldModel+vision
• vision
 – split processing threads
 – communicate all localization candidates to worldModel
 – prepare for adding more camera’s
• worldModel
 – localization:
 • 20% vision, 80% encoders
 • select best vision candidate
 • (slip detection / filtering)
 • no more compass, instead initialize to play forwards
 – improved ball- and obstacle tracking
Base Station

- old pygame visualizer end of life
- implemented new 3D C++ visualizer
 - VTK/QT
 - based on CarpeNoctem visualizer, which in turn is based on Cambada
- our ROS adapters are cleanly isolated in code, for reusability

- working on augmented reality: draw 3D data scene on top of video feed
 - building on Cambada scient. chall. 2016

- roadmap: merge other baseStation elements (commandGui, simulator, ...)

![Base Station Image]
Simulator

- **current design:**
 - ROS interfacing
 - custom-built
 - robots can share the same space... no scrums
 - simple linear 2D ball model with friction and bouncing off objects
 - a second instance of our own team for opponents/obstacles

- **intend to switch to Gazebo (for more realism) – on hold**

- **simulator link discussion**
 - due to each team having their own SW environment, it cannot be on single laptop
 - so we need some network communication protocol (like worldModel mixed packets)
 - many things to agree on (interfaces, deployment, timing), lot of work
 - why would we pursue this? is this worth the effort
 - (why not re-boot mixed-team protocol, e.g. incorporate in technical challenge?)
SW arch. diagram