Industrial Electronics

(CAR)

Control, Automation and Robotics

(LAR) Laboratory of Automation and Robotics

NEW THRUST ON MINHO TEAM

Campos Azurém 4800-058 Guimarães - PORTUGAL Phone : +351 253 510 180

Fax: +351 253 510 1885

MINHO TEAM

Fernando Ribeiro

Team Leader
RoboCup Trustee

Gil Lopes

Team Leader Chief Engineering

MINHO TEAM

Hélder Ribeiro

Artificial Intelligence,
Tactics & Strategy

Pedro Osório

Vision & Calibration
3D ball Recognition/Goalkeeper

Tiago Maia

Motion Dynamics Motion Planning

André Gomes

Power electronics
Hardware

Ricardo Roriz

RTDB Communications

Nuno Ferreira

Ball Reception Mechanism Mechanical Engineering

Evolution of Minho Team

- Started in 1997
- Participations in RoboCup events from 1997-2011
- New set of students in 2014, mainly rebuilding the robots
- Aiming to participate in RoboCup'2016

MINHO TEAM ROBOT

HEAD

BFLY-PGE-13S2C-CS

Lens

Curved Mirror

9 Degrees of Freedom - IMU

BASE LAYER ONE

12,6 V 4400mAh LiFe Battery

OMNI 3MD
Omni-directional
Motor
Controller

BASE LAYER TWO

Kick Capacitors

Charge/Discharge Capacitors

Kick Inductor

Hardware Controller Box

Sonar Ball Detector

Kick's Type Inductor

Power Box

Mini-PC

LOCALIZATION

LOCALIZATION

Image Segmentation/Scan Lines Segmentation

Field-Line Transitions Detect Line Points

POSE ESTIMATION

PROCEDURE:

- •72 radial scan lines, one each 5º.
- Pre-generated file with the closest line point in every 72 directions.
- Detect line points using the scan lines.
- •Compare the detected line points with the pre-generated ones to find the least error.
- •Locally or Globally, what changes is the range of comparison with the pregenerated "Field-Map" file.
- Obtain data from odometry.

PROBLEMS AND SOLUTIONS

Problems Experienced:

- •Without the Kalman Filter, the vision estimator produces erroneous "jumps".
- •Exterior light interference, causing "false-positives" in line point detection.
- •Bad calibration of image segmentation and image-to-world distance mapping, produce large errors in the estimate.

PROBLEMS AND SOLUTIONS

Future Solutions:

- •Use odometry and a Kalman filter, to filter out jumps and smooth the pose estimate.
- •Better calibration of the camera itself and catadioptric mirror improvement.
- •Create a software to calibrate image-to-world distance mapping and image segmentation algorithms and values.
- Adaptation of "Calculating the Perfect Match" by Brainstormers Tribot.

SELF-LOCALIZATION EXAMPLES

3D Ball Recognition using Kinect

Image Acquisition Image processing to detect ball candidates

Filter candidates using geometric relationships

Use 3D image to obtain ball's 3D coordinates

Future Work in Goalkeeping

- Better filtering in the candidates list using more morphological comparisons.
- Use of a Kalman Filter to predict ball movement and produce
 a future estimate of where the ball will cross the goal-line.

- Active goalkeeping based on human goalkeepers positioning and game-sense.
- Build of goalkeeping structure, as in this stage, we don't have any.

Questions?

Thank you for your attention

