Mutual Goal Agreement for Multi-Agent Systems Under Adverse Conditions

Andreas Witsch

Distributed Systems Group Kassel University

ALICA Overview	Motivation	CaCE	Results	**
•••				DISTRIBUTED SYSTEMS

Team Behavior Modelling

- A plan for a single agent can easily be descriped as finite state machine.
- Each state requires the Agent to execute a certain behaviour. OC7

ALICA Overview	Motivation	CaCE	Results	
•••				DISTRIBUTED SYSTEMS

Team Behavior Modelling

- A plan for a single agent can easily be descriped as finite state machine.
- Each state requires the Agent to execute a certain behaviour.
- Multiple agents ⇒ mutiple state machines.

ALICA Overview	Motivation	CaCE	Results	**
••				DISTRIBUTED SYSTEMS

Team Behavior Modelling

Overall Questions:

- How to coordinate transitions?
- How to assign agents to the state machines?

ROBOTIC SO

ALICA Overview	Motivation	CaCE	Results	
				DISTRIBUTED SYSTEMS

Assignment of robots to the statemachines (SM)

Renic socce

Andreas Witsch

Mutual Goal Agreement for Multi-Agent Systems

3 of 15

ALICA Overview	Motivation	CaCE 000000	Results	**
				DISTRIBUTED SYSTEMS

Assignment of robots to the statemachines (SM)

Stoportic socce

Andreas Witsch

Mutual Goal Agreement for Multi-Agent Systems

3 of 15

ALICA Overview	Motivation 00	CaCE 000000	Results 00	**
				DISTRIBUTED SYSTEMS

Assignment of robots to the statemachines (SM)

 Annotation of each SM with a *Task* and a *Cardinality*,

Rosofic SOL

ALICA Overview	Motivation	CaCE	Results	
				DISTRIBUTED SYSTEMS

Assignment of robots to the statemachines (SM)

- Annotation of each SM with a *Task* and a *Cardinality*,
- Plans have a Precondition, Runtimecondition, and a Utility Function.

ALICA Overview	Motivation	CaCE	Results	**
				DISTRIBUTED SYSTEMS

Assignment of robots to the statemachines (SM)

- Annotation of each SM with a *Task* and a *Cardinality*,
- Plans have a Precondition, Runtimecondition, and a Utility Function: SOCCE
- Plan variables can be queried.

ALICA Overview	Motivation	CaCE	Results	
00	•0	000000	00	· • • •
				DISTRIBUTED SYSTEMS

Andreas Witsch

Mutual Goal Agreement for Multi-Agent Systems

4 of 15

RENUC: BOTIC SOCCE

ALICA Overview	Motivation	CaCE	Results	**
00		000000	00	DISTRIBUTED SYSTEMS

ALICA Overview	Motivation	CaCE	Results	**
00		000000	00	DISTRIBUTED SYSTEMS

ALICA Overview	Motivation	CaCE	Results	***
00	•0	000000	00	•••
				DISTRIBUTED SYSTEMS

REFIC SOCC

ALICA Overview	Motivation	CaCE	Results	***
00	•0	000000	00	•••
				DISTRIBUTED SYSTEMS

ALICA Overview	Motivation	CaCE	Results	
00	0	000000	00	·•·•
				DISTRIBUTED SYSTEMS

Sensor data can cause conflicts

 \Rightarrow No conflict resolution

ALICA Overview	Motivation	CaCE	Results	
00	0	000000	00	·•·•
				DISTRIBUTED SYSTEMS

- Sensor data can cause conflicts
 - $\Rightarrow~$ No conflict resolution
- Whole team decides about values
 - \Rightarrow How can a single agent make decisions?

ALICA Overview	Motivation	CaCE	Results	
00	0	000000	00	·•·•
				DISTRIBUTED SYSTEMS

- Sensor data can cause conflicts
 - \Rightarrow No conflict resolution
- Whole team decides about values
 - \Rightarrow How can a single agent make decisions?
- Only numeric datatypes are supported
 - \Rightarrow No support for complex datatypes e.g. lists

ALICA Overview	Motivation	CaCE	Results	
00	0	000000	00	·•·•
				DISTRIBUTED SYSTEMS

- Sensor data can cause conflicts
 - $\Rightarrow~$ No conflict resolution
- Whole team decides about values
 - \Rightarrow How can a single agent make decisions?
- Only numeric datatypes are supported
 - \Rightarrow No support for complex datatypes e.g. lists
- Values are determined each iteration
 - \Rightarrow Persistency is not possible

ALICA Overview	Motivation	CaCE	Results	
00	0	000000	00	·•·•
				DISTRIBUTED SYSTEMS

- Sensor data can cause conflicts
 - \Rightarrow No conflict resolution
- Whole team decides about values
 - \Rightarrow How can a single agent make decisions?
- Only numeric datatypes are supported
 - \Rightarrow No support for complex datatypes e.g. lists
- Values are determined each iteration
 - \Rightarrow Persistency is not possible

We need a agreement for variable values.

ALICA Overview	Motivation	CaCE	Results	**
				DISTRIBUTED SYSTEMS

$\underline{Carpe \ Noctem \ \underline{C}onsensus \ \underline{E}ngine}_{CaCE}$

Mutual Goal Agreement for Multi-Agent Systems

RENUCI Resortic SOCCE

ALICA Overview	Motivation	CaCE	Results	200 - California (1990)
00	00	00000	00	•••
				DISTRIBUTED SYSTEMS

CaCE Overview

CaCE 1 2 Variable A 3 3 1 2 Variable B 3 1 2 Variable B 3 3

What is CaCE?

- A distributed tuple space with replication
- An approach to achieve coordination for ALICA variables

Requirements:

- Communication is transient and unreliable
- Conflicts can occur, but we have to deal with them
- Support of persistency and complex datatypes

ALICA Overview	Motivation	CaCE	Results	**
				DISTRIBUTED SYSTEMS

Data Distribution in CaCE

Mutual Goal Agreement for Multi-Agent Systems

ALICA Overview	Motivation	CaCE	Results	
00	00	000000	00	·•·•
				DISTRIBUTED SYSTEMS

Steps to Achieve Agreement

- Consistency Strategy
 - \Rightarrow How to distribute value proposals

ALICA Overview	Motivation	CaCE	Results	
00	00	000000	00	·•·•
				DISTRIBUTED SYSTEMS

Steps to Achieve Agreement

- Consistency Strategy
 - \Rightarrow How to distribute value proposals
- Acceptance Strategy
 - \Rightarrow When to accept a proposal as own proposal

ALICA Overview	Motivation	CaCE	Results	
00	00	000000	00	·•·•
				DISTRIBUTED SYSTEMS

Steps to Achieve Agreement

- Consistency Strategy
 - \Rightarrow How to distribute value proposals
- Acceptance Strategy
 - \Rightarrow When to accept a proposal as own proposal
- Value Decission Strategy
 - \Rightarrow Determine the current value from the known proposals.

CaCE Consistency Levels

ALICA Overview	Motivation	CaCE	Results	
00	00	000000	00	·•••
				DISTRIBUTED SYSTEMS

Acceptance Strategy: Believe Ordering

A conflict resolution strategy is a function C, which decides for the highest ranked input belief for a Variable x:

$$\begin{aligned} \mathrm{VP}_{\mathsf{a}}(x) &= \mathcal{C}(\mathrm{VP}_{\mathsf{a}}(x), \mathrm{VP}_{b}(x), ..., \mathrm{VP}_{n}(x)) \\ &= \max(\mathrm{VP}(x) \in <_{o}) \end{aligned}$$

⇒ C choses the maximum w.r.t. a strict ordering relation <_o with:

 $<_o \subseteq \operatorname{VP}(x) \times \operatorname{VP}(x)$

ALICA Overview	Motivation	CaCE	Results	
00	00	000000	00	·•••
				DISTRIBUTED SYSTEMS

Acceptance Strategy: Believe Ordering

A conflict resolution strategy is a function C, which decides for the highest ranked input belief for a Variable x:

$$VP_a(x) = C(VP_a(x), VP_b(x), ..., VP_n(x))$$

= max(VP(x) $\in <_o$)

 \Rightarrow C choses the maximum w.r.t. a strict ordering relation $<_o$ with: BE NUCI

$$<_o \subseteq \operatorname{VP}(x) \times \operatorname{VP}(x)$$

Example

The default conflict resolution order beliefs by the Lamport time $<_{Lt} = \{(VP_1(x), VP_2(x)) \mid Lt(VP_1(x)) < Lt(VP_2(x))\}$

ALICA Overview	Motivation	CaCE	Results	
				DISTRIBUTED SYSTEMS

Value Decission

Most Common Decission Strategies

- Most recent proposal
- Majority voting
- Full agreement

ALICA Overview	Motivation 00	CaCE 000000	Results ●0	~~
				DISTRIBUTED SYSTEMS

Latency

**	Results	CaCE	Motivation	ALICA Overview
DISTRIBUTED SYSTEMS				

Transmission Time

ALICA Overview	Motivation	CaCE	Results	**
				DISTRIBUTED SYSTEMS

Thank you for your attention

Andreas Witsch

Mutual Goal Agreement for Multi-Agent Systems

15 of 15