Upcoming 2020 improvements for RCT team

- Still trying to make a robot able to play games!
 - Learning form other teams...

- New features:
 - Improved coil gun.
 - Improved propulsion structure
 - Reliable embedded processing architecture
 - Reliable sensors
 - Cameras
 - Lidars

- New robots:
 - New ball handling system
Introducing a multi-coil kicking system:

- Same copper weight
 - Old one: 1 coil
 - New one: 4 coils

- Same overall capacitor value
 - Old one: one 4700uF 450V capacitor
 - New one: four 1200uF 450V capacitors
Modelling a kicking system under Matlab Simulink:

Finite element generated lookup tables
Power conversion simulations:

- Capacitor energy: $E_c = 450\text{J}$
 - Equivalent mass for plunger + ball + vertical bar: 0,7kg
 - Theoretical ball speed in a perfect energy transfer: 35.8m.s^{-1} (126 km.h^{-1})

- Simulated output ball speed with one coil:
 - 11m.s^{-1} (40 km.h^{-1})
 - $E_c = 42\text{ J}$
 - Energy transfer: 9.3%

- Simulated output ball speed with four coils:
 - 17m.s^{-1} (61 km.h^{-1})
 - $E_c = 101\text{ J}$
 - Energy transfer: 22.4%
Simulations: One coil VS Four coils

Final speeds: One coil: 11 m.s⁻¹ VS Four coils: 17 m.s⁻¹
Multi-coil kicking system: results

- **Hypothesis:**
 - No change in copper weight or capacitor overall value

- **Results:**
 - Improves energy transfer by a factor 2.4.
 - Still to improve (power transfer of only 22%)

- **We will use at RoboCup 2020**
 - Kicking system PCB operational
 - In production now.
 - Based on TUe circuit
 - Small evolutions for safety in case of short circuits.
Introducing a new omni-directional mirror

- Evolution of our non distorting mirror
 - Already presented in 2019
 - A square in the horizontal plane has the same size on the image, whatever its position in the scene.

- Introducing a bi-foveal mirror
 - Double non-distorting mirror
 - See the whole field
 - See precisely around the robot
Introducing a different robot configuration

- 4 omni-wheels in a pentagonal structure
 - More power during acceleration
 - Very large free area in front of the robot
 - 144° in a pentagonal structure
 - 120° in a triangular structure

- A difficulty
 - Hyperstatism due to the fourth wheel
 - Using suspended wheels mounted on rubber.
Introducing a new ball handling system

- Large ball handling system
 - Take advantage of the large opening angle of the pentagonal base structure
- Using 6 mecanum wheels
 - Inspired by Water team
 - Grip of the mecanum wheels
 - Auto-centering of the ball
 - Necessary with a wide opening angle
- Has to be tested extensively
 - We will report videos as soon as possible.
 - Instagram: #robotclubtoulon

RoboCup MSL Workshop 2019
Robot Club Toulon
Sensor and Embedded system evolution

- Using GTX 1060 GPU for computer vision (Neousys computers)
- Using Basler cameras with Gbit Ethernet and PoE.
- Using Lidars for collision avoidance
 - Studying the possibility of using a 50Hz – 0.014° resolution LIDAR
 - Precision: points every 2.5mm at 10 meters.
Thanks for your attention

Questions?