RoboCup MSL Workshop 2019

- Upcoming 2020 improvements for RCT team
 - Still trying to make a robot able to play games!
 - Learning form other teams...
 - New features :
 - Improved coil gun.
 - Improved propulsion structure
 - Reliable embedded processing architecture
 - Reliable sensors
 - Cameras
 - Lidars
 - New robots :
 - New ball handling system

- Introducing a multi-coil kicking system :
 - Same copper weight

Old one: 1 coil

New one : 4 coils

Same overall capacitor value

Old one : one 4700uF 450V capacitor

New one : four 1200uF 450V capacitors

Modelling a kicking system under Matlab Simulink :

- Power conversion simulations :
 - Capacitor energy : Ec = 450J
 - Equivalent mass for plunger + ball + vertical bar : 0,7kg
 - Theoretical ball speed in a perfect energy transfer : 35.8m.s-1 (126 km.h-1)
 - Simulated output ball speed with one coil :
 - 11m.s-1 (40 km.h-1)
 - Ec = 42 J
 - Energy transfer : 9.3 %
 - Simulated output ball speed with four coils :
 - 17m.s-1 (61km.h-1)
 - Ec = 101 J
 - Energy transfer: 22.4%

0

0.005

0.01

0.015

0.02

0.025

RoboCup MSL Workshop 2019 Robot Club Toulon

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

□ Final speeds : One coil : 11m.s-1 VS Four coils : 17m.s-1

0.03

- Multi-coil kicking system : results
 - Hypothesis:
 - No change in copper weight or capacitor overall value
 - Results:
 - Improves energy transfer by a factor 2.4.
 - Still to improve (power transfer of only 22%)
 - We will use at RoboCup 2020
 - Kicking system PCB operational
 - In production now.
 - Based on TUe circuit
 - Small evolutions for safety in case of short circuits.

- Introducing a new omni-directional mirror
 - Evolution of our non distorting mirror
 - Already presented in 2019
 - A square in the horizontal plane has the same size on the image, whatever its position in the scene.
 - Introducing a bi-foveal mirror
 - Double non-distorting mirror
 - See the whole field
 - See precisely around the robot

- Introducing a different robot configuration
 - 4 omni-wheels in a pentagonal structure
 - More power during acceleration
 - Very large free area in front of the robot
 - 144° in a pentagonal structure
 - 120° in a triangular structure
 - A difficulty
 - Hyperstatism due to the fourth wheel
 - Using suspended wheels mounted on rubber.

- Introducing a new ball handling system
 - Large ball handling system
 - Tak eadvantage of the large opening angle of the pentagonal base structure
 - Using 6 mecanum wheels
 - Inspired by Water team
 - Grip of the mecanum wheels
 - Auto-centering of the ball
 - Necessary with a wide opening angle
 - Has to be tested extensively
 - We will report videos as soon as possible.
 - Instagram : #robotclubtoulon

- Sensor and Embedded system evolution
 - Using GTX 1060 GPU for computer vision (Neousys computers)
 - Using Basler cameras with Gbit Ethernet and PoE.
 - Using Lidars for collision avoidance
 - Studying the possibility of using a 50Hz 0.014° resolution LIDAR
 - Precision : points every 2.5mm at 10 meters.

Thanks for your attention

Questions?