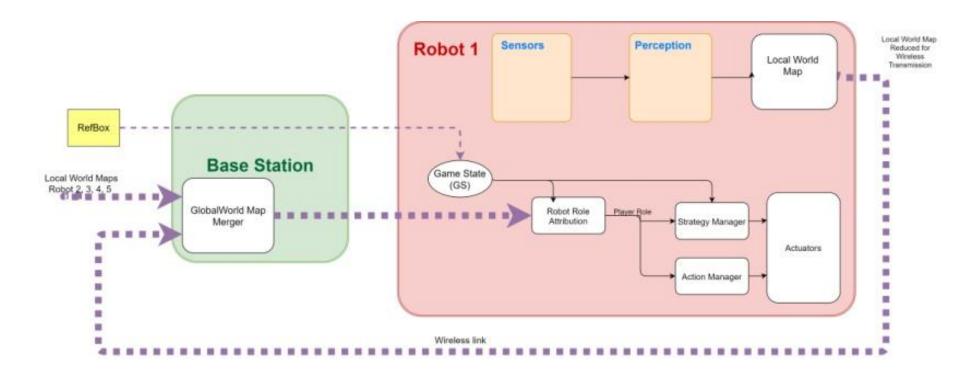
RoboCup MSL Technical challenge 2021

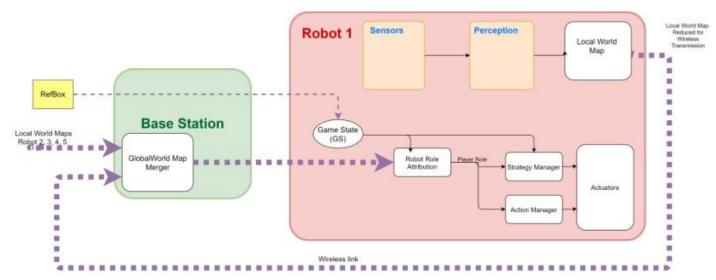
- □ Playing with humans : the (near) future of RoboCup MSL
 - A major step on the road to 2050

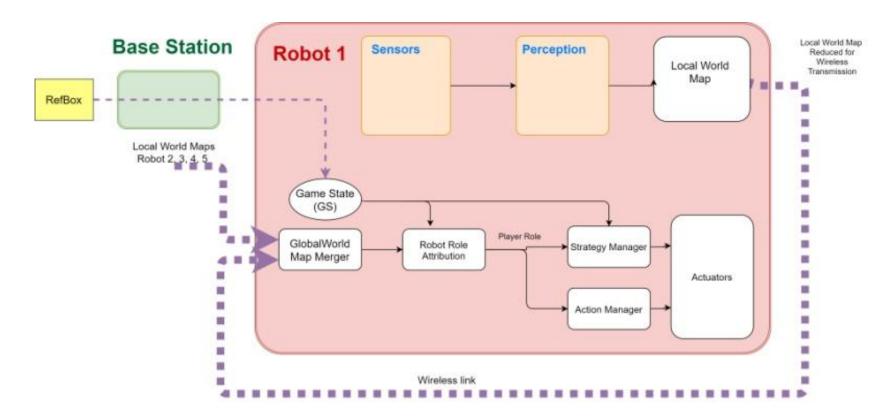
- Playing with humans raises major challenges
 - Playing without digital communications
 - Except for the referee
 - Improving drastically embedded perception
 - No more shared perception
 - Requires Robots/humans/landmarks identification and localisation
 - Maintaining or reducing hardware cost
 - Improving robot skills
 - Require to be competitive with humans

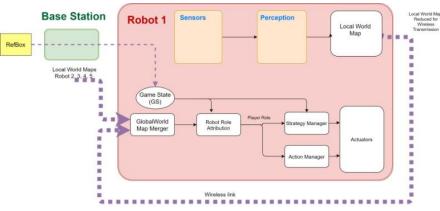
- Playing without wireless communications
 - Presented in this technical challenge
 - Almost fully implemented by RCT

- Presented tomorrow in scientific challenge!
- Implemented in RCT robots
- Improving robot skills
 - A new optimized coil gun for improving kicking strength
 - Presented in this technical challenge
 - Implemented in RCT robots




- A starting point : team communications using Multicast
 - Local world maps sent from robots
 - Global world map sent from base station

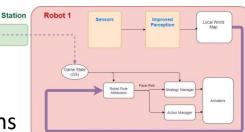

- A starting point : team communications using Multicast
 - Pro :
 - Perception sharing : multiple points of view
 - Map merges on base station: reduces embedded computations
 - Cons:
 - Important latency for transmissions
 - Far from human behaviour
 - Everyone tells its position


- Removing base station: a first step toward communication removal
 - Local world map from each robot sent to all robots (multicast)
 - Every robot generate global world map.

- Removing base station: a first step toward communication removal
 - Pro :
 - Perception sharing : multiple point of view
 - No transmission of Global World Map: reduces latency
 - Deterministic if multicast sharing of local world works properly.
 - Everyone as the same information
 - Cons:
 - Increased computional effort on robots.
 - Far from human behaviour
 - Everyone tells its position
 - Base station still forward RefBox info.
 - Operational in RCT robot

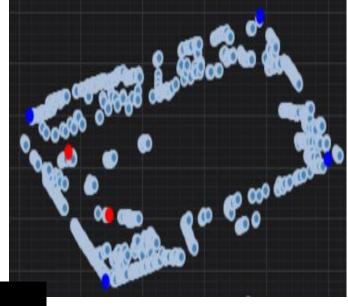
- What is really necessary for a human player ?
 - Teammates / opponents / goal position / approximate location : YES
 - Is it strictly necessary to have communication for that? NO
 - Except for referee actions

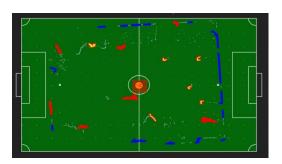
A major change implemented in 2021 : removing digital communications for being closer to humans



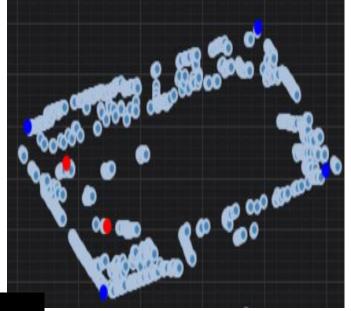
- A major change implemented in 2021 : removing digital communications for being closer to humans

 Base Station Robot 1
 - Pro : an important key for playing with humans
 - Close to human behaviour
 - Robots don't advertise their locations and perceptions
 - Robots and humans are equivalent algorithmically.
 - Cons : require important changes in perception
 - No information sharing :
 - No redundancy : require a more reliable perception
 - Strategy algorithms have to consider that every teammate doesn't have the same information. More difficult to assign roles.
 - A fantastic field for research!




RoboCup MSL - Technical challenge 2021 II - Improving embedded perception

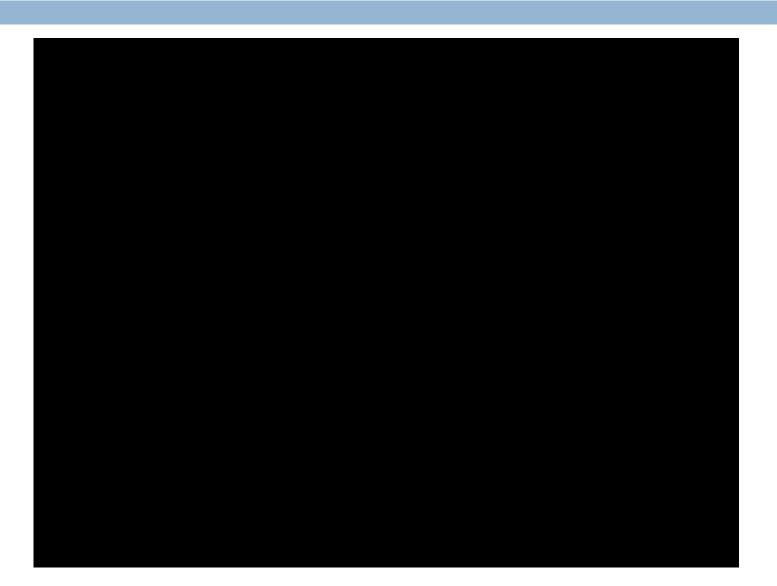
- Removing digital communication => improving perception
 - Teammates / opponent identification from a single point of view.
 - Robots or humans
 - Reliable positioning
 - Finding landmarks even in difficult scenes
 - Field corners / Goal posts
 - Finding teammates and opponents positions
 - Using complementary sensors and processing
 - Camera / Lidar / IMU

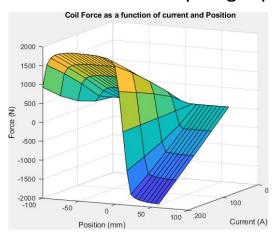


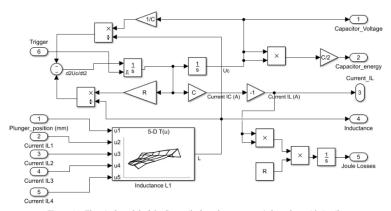
RoboCup MSL - Technical challenge 2021 II - Improving embedded perception

Removing digital communication => improving perception

Fully presented tomorrow in scientific challenge!



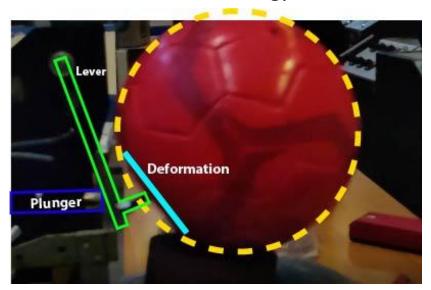




A new optimised coil gun

- Hypothesis:
 - Keeping the same amount of copper
 - Keeping the same capacitance value
- Simulated using finite elements (FEMM 4.2)
- Optimized with Matlab
 - Best nb of coils : 2
 - Pulses delay : 7 ms
 - Initial plunger position : 9 cm

- Theoretical and experimental results:
 - Ball speed :
 - Theoretically up to 60km/h measured at more than 50 km/h
 - Max shooting distance (first rebound): 28m measured 25m.
 - Reproductible for other teams (published paper and shared design).
 - Better than existing solutions
 - Ratio energy/volume :
 - 10 times better than human leg
 - 5 times better than rotating launcher


Table 5. Ball launchers comparison including optimized launcher.

Launcher	Length (cm)	Width (cm)	Height (cm)	Volume (cm ³)	Weight (kg)	Ball Speed (m·s ⁻¹)	Ball Energy (J)	Energy Volume (J·dm ⁻³)
Soccer player leg	160	20	80	133×10^3	20	36	290	2.18
Rotating inertial launcher	25	65	25	40×10^{3}	25	29	190	4.75
Robot arm [9]	240	240	30	1360×10^{3}	50	21	100	0.07
Reluctance coil gun [11]	30	9	9	2.4×10^{3}	4.5	11.4	29	12.08
Optimized coil gun	30	9	9	2.4×10^{3}	4.5	16.4	60.5	25.21

- Published as research papers :
 - 2020 MDPI Applied Physics : Optimisation of Energy Transfer in Reluctance Coil Guns: Application to Soccer Ball Launchers V. Gies et al.
 - 2019 MDPI Actuators : Modeling and Optimization of an Indirect Coil Gun for Launching Non-Magnetic Projectiles *V. Gies et al.*
 - 2019 RoboCup Symposium : Modelling and Optimisation of a RoboCup MSL coilgun
- Further work :
 - Taking into account ball deformation in the energy transfer model

- Conclusion: 3 keys for playing with humans
 - Playing without digital communications (ready)
 - Improving embedded perception (ready)
 - Results and algorithms will be presented tomorrow in scientific challenge.
 - Improving robot skills : introducing a new coil gun (ready)
- Teams are welcome for collaborative research!
- Mechanics, electronics and code shared on GitHub after the competition :

https://github.com/iutgeiitoulon/RoboCup2020

RoboCup MSL Technical challenge 2021

Thanks for your attention Questions?

