Playing with humans : improving embedded perception

Playing with humans : improving embedded perception

Playing with humans : the (near) future of RoboCup MSL

A major step on the road to 2050

Playing with humans : improving embedded perception

Playing with humans raises major challenges

- Improving robot skills : (technical challenge)
 - Require to be competitive with humans
- Playing without wireless communications : (technical challenge)
 - Except for the referee

Require improving drastically embedded perception

- No more shared perception
- Requires Robots/humans/landmarks identification and localisation
- Limited hardware computational capabilities.

Playing with humans : improving embedded perception

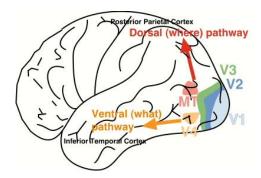
What is an improved perception ?

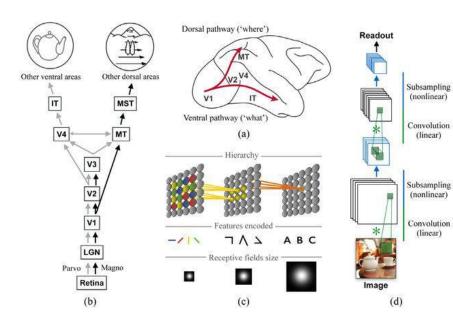
- Identification Who ?
 - Teammates / opponents / referee / landmarks
- Positioning Where ?
 - Teammates / opponents / referee / landmarks
- Postural communication : What ?
 - What is « told » by gesture of teammates / opponents / referee / coach ?
 - See excellent Tech United Technical Challenge ③

Playing with humans : improving embedded perception

How perception is implemented in the brain ?

- Vision preprocessing
 - Close to CNN
- Identification and posture : Who/What ?
 - Cortex ventral pathway
 - Mainly based on vision
- Positioning : Where ?
 - Cortex dorsal pathway
 - Coupling « sensors »
 - Vision / Streovision
 - Acoustic perception
- Key bioinspired ideas
 - Complementary perception organs
 - Parallel processings



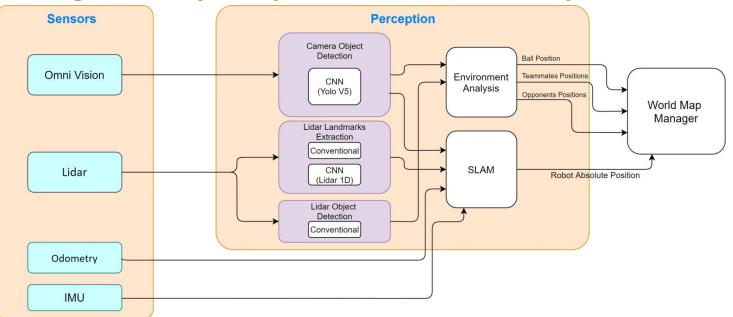


Playing with humans : improving embedded perception

How to implement advanced perception in robots ?

- Combining multiple sensors and processings is a key
 - Lidar : precision (angular and radial), but 1D
 - Camera : 2D, color but no radial precision
 - SLAM for sensor fusion

Processing efficiency is important : several task in parallel

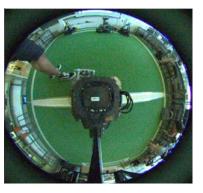


Playing with humans : improving embedded perception

Who / What ? Omnidirectional camera + deep learning

Contribution : a new technical choice

- 185° fisheye pointed vertically to the ground.
- No more problem of misalignment of camera and mirror.
 - No need for hardware calibration
- Excellent optical quality.



- Image transformed to panorama
 - Require a software autocalibration (instead of hardware calibration)
 - Finding fisheye center to have a straight panorama image.

Playing with humans : improving embedded perception

Who / What ? Omnidirectional camera + deep learning

- Followed by image segmentation using CNN
 - Well-known Yolo V5 algorithm on standard cameras.
 - Doesn't work on fisheye images directly
 - CNN are rotation sensitive
- Contribution : first time applied to unwarped spherical images
 - Requires an extended training set
 - Nubot TS + fisheye panorama samples

Playing with humans : improving embedded perception

Who / What ? Omnidirectional camera + deep learning

- Experimental performances :
 - Detection of 4 classes : goal / robots / balls / humans
 - AUC : 87%
 - Latency : nearly real time
 - 34-40ms (Yolo V5 large model) : 25 fps
 - 10-15ms (small model) : more than 60 fps
 - GPU : 6% (GTX 1060) CPU : 20% (mainly for fisheye to panorama)

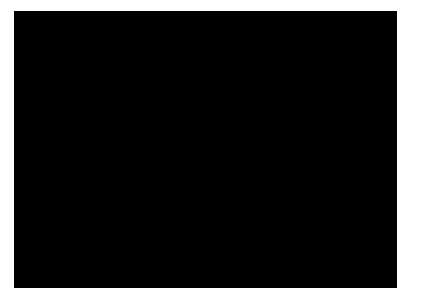
Pros :

- Able to segment complex scenes
- Able to distinguish human/robots color (an idea : shirt could be enlarge in the future for easier analysis, like in real soccer)
- Excellent angular resolution
- Cons :
 - Poor radial resolution
 - Computationally expensive

Playing with humans : improving embedded perception

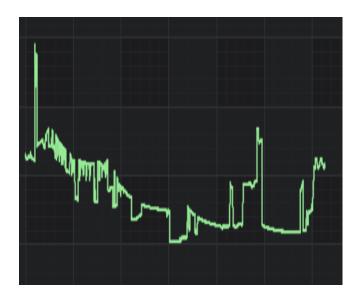
Where ? Lidar : the perfect complement to omni-camera

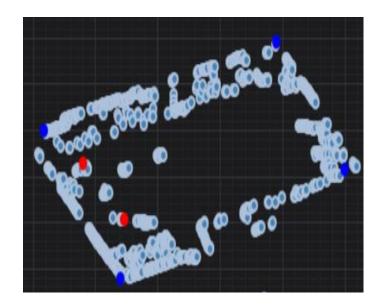
- Excellent radial resolution all around the robot : 1 cm
 - Impossible with omnicamera
 - 360° difficult with stereovision.
- Allow landmarks extraction with precision
 - Example : room corners
 - Limited to simple situations using geometric methods



Playing with humans : improving embedded perception

- Where ? Lidar : the perfect complement to omni-camera
 - Contribution : a low-computational cost 1D Lidar deep learning algorithm
 - Finding landmarks in a scene (for further SLAM). Here :
 - Goal posts
 - Room / stadium corners.
 - Can be found by 2D image analysis using CNN : computationally expensive





Playing with humans : improving embedded perception

Where ? Lidar : the perfect complement to omni-camera

1440

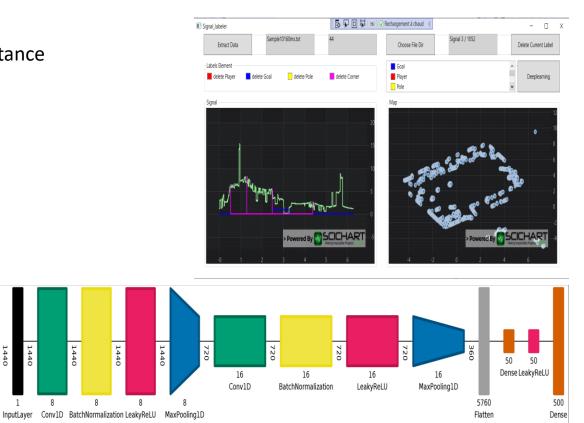
8

1440

1

- Contribution : a low-computational cost 1D lidar deep learning algorithm
 - Dedicated labelling software
 - Using a custom 2 layers CNN
 - Optimized for :
 - Object angle and distance
 - Classification

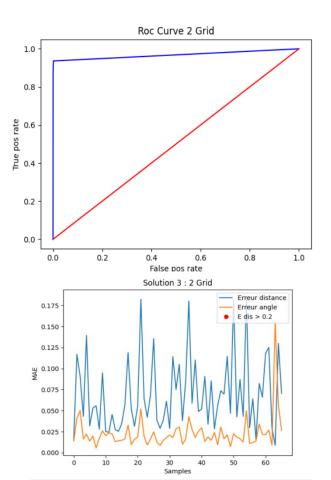
$$Loss = \lambda_{\theta} \sum_{i=0}^{C_x} 1_i^{obj} (\theta_i - \hat{\theta}_i)^2 + (d_i - \hat{d}_i)^2 + \lambda_{\Pr_1} \sum_{i=0}^{C_x} 1_i^{obj} (\Pr_i - \hat{\Pr}_i)^2 + \lambda_{\Pr_2} \sum_{i=0}^{C_x} 1_i^{noobj} (\Pr_i - \hat{\Pr}_i)^2 + \sum_{i=0}^{C_x} 1_i^{obj} \sum_{c \in classes} (c_i - \hat{c}_i)^2$$



Playing with humans : improving embedded percepton

Where ? Lidar : the perfect complement to omni-camera

- Results for detection of posts / balls / robots / humans
 - AUC 85% : good detection
 - Allow an efficient positioning
- Efficiency :
 - Angular error stddev : 0.025 rad (1.5°)
 - Radial error stddev : <10 cm</p>
 - Low computation time : <1ms</p>
 - -> low latency
 - Allow several processings in parallel



Playing with humans : improving embedded percepton

Final perception step : merging data in a single world map

- Implementing standard EKF SLAM :
 - Simulataneous localisation and mapping (SLAM)
 - Based on Extended Kalman Filter
 - Require to have reliable landmarks

Will be presented next year ^(C)

Playing with humans : improving embedded perception

Playing with humans : improving embedded perception

- Bio-inspired combination of sensors and efficient processings is the key :
 - Contribution 1 : an omni camera with software calibration only
 - Contribution 2 : an application of Yolo V5 to unwarped spherical images (Who/What ?)
 - Contribution 3 : a low-computational cost 1D lidar deep learning algorithm (Who/What ? Where ? Low-Power)

Shared on GitHub : https://github.com/iutgeiitoulon/RoboCup2020

Recent team publications related to RoboCup MSL or robots multi-agent perception:

- Article : 2020 Applied Physics : Distributed Adaptive Neural Network Control Applied to a Formation Tracking of a Group of Low-Cost Underwater Drones in Hazardous Environments – H. A. Pham et al.
- Article : 2020 Applied Physics : Optimisation of Energy Transfer in Reluctance Coil Guns: Application to Soccer Ball Launchers V. Gies et al.
- Article : 2019 Actuators : Modeling and Optimization of an Indirect Coil Gun for Launching Non-Magnetic Projectiles –V. Gies et al.
- Conf: 2019 RoboCup Symposium: Modelling and Optimisation of a RoboCup MSL coilgun
- Conf : 2020 Mechatronics 4.0 conference : Mechatronics Iterative Design for Robots Multi-agent Integration T. Soriano et al.

Playing with humans : improving embedded perception

Thanks for your attention Questions ?

