
Tech United Eindhoven Team Description 2022

Elise Verhees, Lars Nijland, Isabelle Franklin, Karin van Minnen, Jorrit
Olthuis, Ruben Beumer, Wouter Kuijpers, Ainse Kokkelmans, Chuck Steijlen,

Danny Hameeteman, Dennis Bruijnen, Emre Deniz, Ferry Schoenmakers,
Harrie van de Loo, Joep Selten, Johan Kon, Koen Meessen, Matthias Briegel,
Patrick van Brakel, Peter Teurlings, Peter van Lith, Ruud van den Bogaert,

Stefan Kempers, Wouter Aangenent, Wouter Houtman, Yanick Douven, Aneesh
Deogan, Javi Olucha Delgado, Youssof Nounou, and René van de Molengraft

Eindhoven University of Technology,
De Rondom 70, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

techunited@tue.nl,
Home page: www.techunited.nl

Abstract. The Tech United Eindhoven Middle-Size League (MSL) team
is a five times world-champion, and achieved respectively a first and sec-
ond place in the technical and scientific challenge of (online) RoboCup
2021. In the past year, despite two years of cancelled tournaments, the
team has made a considerable amount of developments. For the sake of
qualification for RoboCup 2022, this paper describes the most notable of
those developments: shooting less predictable balls to score more goals,
catching balls by the goalkeeper to increase ball possession, and simulat-
ing matches to realize more practicing time against other teams.

Keywords: RoboCup Soccer · Middle-Size League · multi-robot ·
effect balls · catching goalkeeper · simulating matches

1 Introduction

Tech United Eindhoven represents Eindhoven University of Technology (TU/e)
in the RoboCup competitions. The team started participating in the Middle-Size
League (MSL) in 2006, and achieved a spot in the final for twelve years in a row.
The first place was achieved five times: in 2012, 2014, 2016, 2018 and 2019. At
the moment of writing, the MSL team consists mainly of students (PhD, MSc
and BSc), staff members and alumni of TU/e. This paper describes the major
scientific improvements of the team over the past year. First, in Section 2, an
introduction to Tech United’s fifth generation of soccer robots is given. Then,
Section 3 introduces a new mechanism to shoot a ball with effect. Next, Section
4 describes the efforts made to find a method that allows the goalkeeper to catch
the ball. Furthermore, Section 5 describes the implementation of an architecture
in which the existing simulation software of two teams can be used to realize
simulated matches in MSL. Lastly, Section 6 gives some concluding remarks.

techunited@tue.nl
www.techunited.nl

2 Robot Platform

Tech United’s soccer robots are called TURTLEs, an acronym for “Tech United
RoboCup Team: Limited Edition”. Currently, the fifth generation hardware TUR-
TLE is used; see Section 2 of the description paper of 2014 [1] for a schematic
representation covering the main outline of the robot design. A detailed list of
hardware specifications, along with CAD files of the base, upper-body, ball han-
dling and shooting mechanism, can furthermore be found on the ROP Wiki1.
The software2 controlling the robots is divided into four main processes: Vision,
Worldmodel, Strategy and Motion. More detailed information on this can be
found in previous team description papers [5,6].

3 Towards the Shooting of Effect Balls

The field of robotics is advancing and soccer robots, especially goalkeepers, are
improving their ball-blocking skills. Tech United thus aims to shoot balls in a
way that makes it hard to predict where the ball will enter the goal, preventing
the opponent’s goalkeeper from blocking the shot. This section elaborates on the
introduction of a new mechanism, that will allow the TURTLEs to intentionally
shoot a ball with effect, leveraging models describing the ball’s impact dynamics.

If the ball has a side spin when it hits the ground, it will obtain linear velocity
components out of the plane of movement, causing the ball to bounce sideways.
To calculate how the ball should be shot to obtain the desired bounce-effect, its
initial spin and linear velocity need to be calculated. The equations for the path
of a bouncing ball are derived and validated in [7], and are a function of these
parameters. When the coordinates of the first bounce and the target of the ball
are known, the equations can be inverted and solved by means of optimization,
to find the spin and velocity. Here, the spin is minimized because the higher the
spin, the more complicated it is to realize.

The current shooting mechanism of the TURTLEs it not capable of shooting
an effect ball, because it cannot deliver the required spin and velocity in one
moment of impact. Therefore, a test setup that decouples the spin and linear
velocity was built, of which a schematic can be seen in Figure 1a. The ball
is rotated by a separate mechanism, a small DC motor below the ball, and it
is shot with the solenoid that the TURTLEs normally use. In Figure 2, some
measurements from shots from the test setup are plotted. Here, it can be seen
that it is possible to achieve the desired bounce angle and target by using the
right amount of spin and linear velocity, with only a small deviation between
the predicted and actual bounce locations.

In the future, the working principle of the test setup should be integrated in
the TURTLEs. The rules set by the RoboCup federation should be adhered to
[2]. The ball may thus not be lifted off the ground and may not be held over
one third of its surface. However, it is allowed to exert forces on the ball that
1 http://www.roboticopenplatform.org/wiki/TURTLE
2 https://gitlab.tue.nl/tech-united-eindhoven

http://www.roboticopenplatform.org/wiki/TURTLE
https://gitlab.tue.nl/tech-united-eindhoven

(a) 3D view of the test setup
(b) Giving spin using a small

rotating belt in blue

Fig. 1: Setups for shooting effect balls

Fig. 2: Measurement of eight effect shots with the same settings. The predicted
bounce locations are represented by ˝, the actual first and second bounce loca-
tions are indicated by respectively + and +, and the path of the ball is repre-
sented by () . The mean actual bounce locations are shown as ˙. The spin
of the ball is 35.3 rad/s and the duty cycle is 22.2%.

hinder it from rotating in its natural direction of rotation, for a duration of one
second. An idea for realizing this on a TURTLE is presented in Figure 1b. Here,
a cross-section of the ball handling system is depicted, with the solenoid, the
ball, ball casters and a small rotating belt.

4 Catching Goalkeeper

The goalkeeper of Tech United has proven to be a reliable blocker throughout
previous competitions. However, a big difference with human soccer players is
that the TURTLE is not able to catch the ball. Due to this deficiency, the ball
bounces back in a seemingly random direction after blocking. For example out-
side the field or towards an opponent. To maintain ball possession, the goalkeeper
could be optimized with a ball catching system that, after catching, can pass
the ball towards a specific team player. This section focuses on finding a method
that allows the goalkeeper to catch the ball.

To be able to catch a ball, the kinetic energy of the arriving ball should
be dissipated. This kinetic energy needs to be converted within a very short
duration. This requires a (controlled) large force, otherwise the ball will bounce
back before the energy is dissipated. By increasing the interaction time between
the robot and the ball, more time to convert energy is available. This could be
realized by receiving the ball using a fabric under a slack tension. Inspired by
the rugby robots of the University of Tokyo RoboTech3, the decision was made
to use respectively a cloth and a net at the front and the back of the TURTLE,
which are used to dissipate most of the kinetic energy of the ball before catching
the ball in a basket.

The cloth at the front is hanging loose and is only fixed at the top. Exper-
iments showed that adding mass to the cloth, especially at the bottom, is the
most effective way to decrease the velocity of the ball. Therefore, a lead lace is
added. The cloth gives the ball an upwards motion, due to the fact that the ball
is not immediately able to separate itself from the cloth, reducing the velocity
of the ball. Next, the net at the back, which is fixed all around the goalkeeper’s
frame, is used to bounce the ball into the basket. The net’s tightness has in-
fluence on whether this is successful: the ball should not be caught in the net
(too much slack), but it should also not bounce outside the basket (too tight).
The latter can happen either directly when the ball is bouncing out of the net
(bounce too far) or after bouncing in the basket (bounce high enough to leave
the basket again). The tightness of the net is determined experimentally.

During a first set of experiments, combining the cloth and the net resulted
in a catching percentage of 82.6% (out of 26 shots). The ball always bounced
in the basket, but sometimes bounced too high within the basket, and left it
again. Therefore, during a second set of experiments, a foam layer was added
at the bottom of the setup, to decrease the ball’s energy and prevent this from
happening. The final setup, see Figure 3a, achieved a catch percentage of 100%
3 https://tuk.t.u-tokyo.ac.jp/robotech/?p=1260

https://tuk.t.u-tokyo.ac.jp/robotech/?p=1260

(out of 39 shots). It can be concluded that this concept, with only a mass of 0.96
kg, has proven itself to be useful, while being cheap, light and uncomplicated.

(a) Final test setup with a caught ball (b) Ball catching goalkeeper

Fig. 3: Ball catching design

To implement the system in the present goalkeeper, a system for an upwards
moving basket should be made, the Kinect cameras should be re-positioned, the
OmniVision camera should be removed, and a way to transport the ball from
the basket towards the shooting mechanism should be designed. The adjusted
goalkeeper is shown in Figure 3b and works as depicted in Figure 4.

5 Realizing Simulated Matches in the RoboCup MSL

As in human football, practice is of utmost importance in order to improve
in the RoboCup MSL. Ideally, practice would include playing matches against
other teams regularly. However, in reality matches are often only played during
tournaments. Additionally, testing on real robots is costly, difficult and time-
consuming due to (i) the highly dynamic environment the robots operate in and
(ii) the fact that the teams are based worldwide. Simulation of matches is thus
highly valuable in order to stimulate progression in the MSL. An example of
software to realize this is Simatch, as introduced in [8]. However, in Simatch
both teams are obliged to use the same simulation software. This forces them to
abandon their own work, which is customary made for their robots, and there-
fore most likely a better fit. Therefore, based on a series of meetings with various
MSL teams (RobotSports, Falcons, CAMBADA and Tech United Eindhoven),
an architecture was defined in which the existing simulation software (simulator

Fig. 4: Visualization of the working of the new designed robot in five stages

and visualizer) of two opposing teams are connected by means of an application
referred to as middleware. The most important requirements behind this archi-
tecture are that (i) it should cost minimal effort for the teams to participate, (ii)
the teams can use their own visualizer and (iii) simulations should not depend
on the availability of another team. This section elaborates on this architecture.

Communication and Time Synchronization Protocol
The solution consists of two protocols: a communication and a time synchroniza-
tion protocol. The communication protocol defines what information, e.g. robot
and ball information, the teams must share with the middleware. The format
that is defined only uses data that is readily available, because it is based on the
data structure for world model sharing as proposed during the MSL Workshop
of 2015, Aveiro, Portugal [3]. This minimizes effort to participate. Furthermore,
the communication protocol is equipped with a timestamped data buffer with
linear interpolation capability. Multiple sets of information of each team with
a corresponding timestamp representing the simulation time at which the in-
formation was acquired are stored. The reason for this is that the simulators
of both teams can advance through time at different rates. Moreover, since the
robots and ball can attain high velocities, the corresponding information loses
its relevance quickly.

The time synchronization protocol uses the aforementioned timestamps to
ensure that both teams stay closely synchronized with respect to simulation time.
If the difference in simulation time exceeds a certain threshold, the simulation
software of the team that is ahead in time is paused. Once the other team has
caught up and the difference in simulation time is below another threshold, the
paused simulation software can continue.

Final Architecture
The solution chosen relies on teams sharing a binary version of their simulation
software. Therefore, it is important that, regardless of the combination of the
OS and programming language used, a team can access and run the software of

another team easily. Docker4 is used for this. Teams produce a Docker image
that includes everything, i.e. executables, scripts and dependencies, needed to
run their simulation software. Other teams can easily access this Docker image
and run it as a Docker container. The middleware will also be run from within
such a container.

Communication between the application within various Docker containers is
achieved by means of a TCP/IP socket connection. Additionally, since teams
use different programming languages, all information is shared in JSON format.
To facilitate the communication with the middleware, software has been written
that can be easily integrated into the existing software of the teams. The teams
only need to fill in where this piece of software can find the information that is
sent to the middleware and where it should store information on the opponents
robots obtained from the middleware.

The final architecture is shown in Figure 5. Here, two additional Docker
containers, including two pauser applications, are shown. These pausers execute
the time synchronization protocol upon command of the middleware and are
required if the various containers are running on multiple computers. It is ex-
pected that this will be the case, since running the simulation software of two
teams is computationally expensive.

PauserMiddlewarePauser

Visualizer team 2

Simulator team 2

Visualizer team 1

Simulator team 1

Docker container

Docker container Docker container Docker container

Docker container

Fig. 5: Final architecture that is used to realize simulated matches consisting of
five Docker containers that all run their own application or group of applications.
Communication is represented by means of a solid arrow; the execution of a
Docker (un)pause command is shown as a dashed arrow.

Results
Initially, the designed architecture was tested by simulating a match between
two copies of the Tech United software. Next, in cooperation with RobotSports,
their software was made compatible to function in the architecture as well. It
has been verified that the proposed solution is suitable to achieve the goal of
simulating matches to practice against one another, while both teams can use
their own simulation software. For more information, the reader is referred to
the full thesis on this section’s subject [4].

4 https://www.docker.com/

https://www.docker.com/

6 Conclusions

This paper described the major scientific improvements on the Tech United soc-
cer robots over the past year. Using a new mechanism for shooting balls, comple-
mented by exploiting ball impact dynamics, has proved to be an effective way to
shoot less predictable balls, which makes it harder for the opponent’s goalkeeper
to block the shot. Furthermore, allowing the goalkeeper to catch balls through a
new method that increases interaction time with the ball was validated, in an ef-
fort to increase ball possession. Lastly, the implementation of an architecture to
simulate matches between two opposing teams, each using their own simulation
software, was validated, which can be used to increase (simulated) practice pos-
sibilities. Hopefully, the presented progress contributes to an even higher level
of dynamic and scientifically challenging soccer competitions during RoboCup
2022 in Bangkok, Thailand.

References

1. Lopez Martinez, C., Schoenmakers, F., Naus, G., Meessen, K., Douven, Y., Van
De Loo, H., Bruijnen, D., Aangenent, W., Groenen, J., Van Ninhuijs, B., Briegel, M.,
Hoogendijk, R., Van Brakel, P., Van Den Berg, R., Hendriks, O., Arts, R., Botden,
F., Houtman, W., Van t Klooster, M., Van Der Velden, J., Beeren, C., De Koning,
L., Klooster, O., Soetens, R., Van De Molengraft, R.: Tech united eindhoven team
description 2014 (2014)

2. MSL Techinal Committee 1997-2020: Middle size robot league rules and regula-
tion for 2022 (2022), https://msl.robocup.org/wp-content/uploads/2022/01/
Rulebook_MSL2022_v23.0.pdf

3. MSL Workshop 2015, Aveiro, Portugal: Data structure for world model sharing in
msl (2020), https://msl.robocup.org/wp-content/uploads/2020/01/Rulebook_
MSL2020_v21.4.pdf, last accessed 14 March 2022

4. Nijland, L.: Realizing simulated matches in the robocup msl (2021), https://pure.
tue.nl/ws/portalfiles/portal/188083876/0958546_Nijland.pdf

5. Schoenmakers, F., Meessen, K., Douven, Y., van de Loo, H., Bruijnen, D., Aan-
genent, W., van Ninhuijs, B., Briegel, M., van Brakel, P., Senden, J., Soetens, R.,
Kuijpers, W., Olthuis, J., van Lith, P., van t Klooster, M., de Koning, L., van de
Molengraft, R.: Tech united eindhoven team description 2017 (2017)

6. Schoenmakers, F., Meessen, K., Douven, Y., van de Loo, H., Bruijnen, D., Aan-
genent, W., Olthuis, J., Houtman, W., de Groot, C., Dolatabadi Farahani, M., van
Lith, P., Scheers, P., Sommer, R., van Ninhuijs, B., van Brakel, P., Senden, J., van t
Klooster, M., Kuijpers, W., van de Molengraft, R.: Tech united eindhoven team
description 2018 (2018)

7. Senden, J., Douven, Y., van de Molengraft, R.: A model-based ap-
proach to reach a 3d target with a soccer ball, kicked by a soc-
cer robot (2016), https://www.techunited.nl/media/images/Publications/
StudentReports/July2016/0716549-Jordy.pdf

8. Zhou, Z., Yao, W., Ma, J., Lu, H., Xiao, J., Zheng, Z.: Simatch: A sim-
ulation system for highly dynamic confrontations between multi-robot sys-
tems. 2018 Chinese Automation Congress (CAC) pp. 3934–3939 (2018).
https://doi.org/10.1109/CAC.2018.8623698

https://msl.robocup.org/wp-content/uploads/2022/01/Rulebook_MSL2022_v23.0.pdf
https://msl.robocup.org/wp-content/uploads/2022/01/Rulebook_MSL2022_v23.0.pdf
https://msl.robocup.org/wp-content/uploads/2020/01/Rulebook_MSL2020_v21.4.pdf
https://msl.robocup.org/wp-content/uploads/2020/01/Rulebook_MSL2020_v21.4.pdf
https://pure.tue.nl/ws/portalfiles/portal/188083876/0958546_Nijland.pdf
https://pure.tue.nl/ws/portalfiles/portal/188083876/0958546_Nijland.pdf
https://www.techunited.nl/media/images/Publications/StudentReports/July2016/0716549-Jordy.pdf
https://www.techunited.nl/media/images/Publications/StudentReports/July2016/0716549-Jordy.pdf
https://doi.org/10.1109/CAC.2018.8623698

	Tech United Eindhoven Team Description 2022

