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Abstract. We are a new student-based team representing Imperial College London’s 

Robotics Society. To our knowledge we are the first MSL team representing both Lon-

don and the United Kingdom. Despite being new to the competition, we aim to bring 

innovative ideas and a disruptive strategy, and most importantly… have fun! 

1 General Design Philosophy 

As one of the newest teams in the MSL competition, it was clear that funding, time to 

develop and academic support would not be readily available to our new team. Within 

the framework of the university, ICRS FC wouldn’t have access to expertise from 

researchers at the university - operating as a part of Imperial College Union’s Robot-

ics Society and not a departmental affiliation. In a sense this project would operate 

purely as an extracurricular exercise for students on paper and would have to fit into 

students' exam and coursework commitments realistically. On that premise, ICRS FC 

is a fully undergraduate team. Despite this, we believed we could contribute both 

originality and a disruptive element to the competition, and contribute to MSL’s orig-

inal mission statement, helping to push the state of the art and contribute new ideas 

and research. From the offset our design space was constrained significantly com-

pared to other teams, and an original strategy was settled on early. The aim was to 
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rush prototyping of a single robot, as a proof of concept. The robot characteristics that 

we could compete on would have to come at the cost of a compromise in other areas, 

due to our budgetary constraints. With that focus, a low cost, low mass platform was 

agreed upon. By reducing our mass (and the associated cost in motor price point and 

powering a heavier platform), we would be able to compete in speed when put against 

other robots in the competition. The computational strategy design path chosen was 

for a fast aggressive strategy. The priority would be on short fast passes, with an em-

phasis on keeping the ball in motion and low to the ground. 

2 Testing Frame 

The primary focus was on a versatile, open and multi-use frame to act as a test bed for 

mounting the kicker, dribbler and visual strategy. The frame used lightweight alumi-

num extrusions and PLA 3D printed connectors. 

 

 

3 Motor Selection 

The drive base was designed to allow rapid movement in any direction. To do this a 

design using 3 omnidirectional wheels, each positioned 120 degrees from one another, 

was selected. Other configurations that would allow for greater speed in a single di-

rection were considered, such as unequal separation of the motors radially, or even 4 

omni wheel designs. Ultimately the flexibility of moving equally in 360 degrees was 

deemed more important, and the simplicity and cost of a 3-wheel system was pre-

ferred. 

4 Motor Controller Stack, Microcontroller & Custom PCB 

To implement this design in software a simple python script was created that would 

run on a mini PC and send commands to a microcontroller over serial. The microcon-

troller then runs custom firmware to interpret and implement the commands, such as 

moving individual motors, moving the whole robot at a certain speed and heading, 

and rotation. Combining these commands to move in an arc or other complex move-

ments is also possible. The microcontroller that was chosen was the Raspberry Pi Pico 

W, which includes two ARM cortex M0+ cores running at 133MHz, as well as Wi-Fi. 
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It was selected for its speed and low cost. The firmware on the microcontroller in-

cludes a real time operating system (freeRTOS) running a number of tasks, such as 

sampling sensors, processing samples, PID controllers, serial communication etc. The 

control scheme for the motor speed PID controllers is pictured below. There is anoth-

er PI controller used to rotate the robot that uses the onboard inertial measurement 

unit (IMU) to calculate the heading and turn to face a new heading. All this function-

ality was first tested using breadboards and was then combined into a custom PCB to 

minimise space and weight and make it tidier. The PCB was designed to be the same 

size as the motor drivers, allowing the boards to be mounted in a stack, further in-

creasing space efficiency. 

  

 

5 Dribbler 

To achieve ball handling and ball receiving, a dribbling system is required to be de-

signed. After considering and comparing various designs, a dribbling system with two 

parts is being developed. The active part consists of two motors attached with drib-

bling wheels, positing in front of the robot. The motor we chose is ZGB37RG, a 12V 

DC motor with 200RPM. For this system, the torque provided by the motor is signifi-

cant as it is required to overcome the friction between the ball and ground. The drib-

bling wheels are also carefully chosen to achieve expected effects. To increase the 

friction between the dribbling wheels and the ball, the skateboard wheels made out of 

Polyurethane have been chosen. The motor bracket is also being designed to mount 

the motor onto the drive base. The passive part consists of two supporting wheels, 

they are planned to be installed in front of the robot and under the frame. Due to time 

constraints, we are still conducting research on designing the dribbling mechanisms 

and controls. One of the current ideas is adjusting the speed of motors depending on 

the distance between the ball and the robot. An ultrasonic sensor can then be imple-

mented to detect the distance. 
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6 Kicker 

A variety of methods were considered for the kicking mechanism. The main re-

quirements were size, reliability, complexity, and cost. The primary goal of the kicker 

was to store a large amount of energy that could be quickly released and transferred to 

the ball. One of the designs considered was a spring powered system. This would use 

a motor to wind up a spring to store energy. Since most parts of this system could be 

manufactured from basic materials, it would be relatively cheap. However, the me-

chanical stress would make it less reliable and durable. Another potential design con-

sidered was a solenoid. This uses a coil of copper wire as an electromagnet to acceler-

ate a rod made from iron and push it into the ball. Fewer moving parts makes this 

more reliable, however the electrical components required would increase the cost 

and pose a potential safety risk. This was the method chosen in the end, with special 

considerations for safety taken to reduce the risks. The circuit uses a large capacitor to 

store energy. This way, energy can slowly be accumulated in between uses, and when 

required, a large, instantaneous current could be drawn to produce a powerful magnet-

ic field for a short period of time. By storing more energy in the capacitor, it would be 

able to impart more energy per kick, and also store multiple kicks worth of energy. 

The energy stored in a capacitor is given using the equation: E= 12CV2. This meant 

either the capacitance or voltage could be increased to achieve a greater energy stor-

age capacity. Increasing the capacitance would increase costs and the capacitor would 

take up more space. Increasing the voltage would require a more complex power sup-

ply and pose a potential hazard. Through extensive research and simulation, a value of 

33mF at 60V was chosen. This provided the best trade-off between safety, cost, and 

charging speed. To achieve a voltage of 60V to charge the capacitor, a boost SMPS 

was utilized. This could take an input of 12V (from a battery) and produce an output 

of 60V (albeit at a low current). The circuit below was designed to charge the capaci-

tor and control the discharge into the solenoid. It takes the 60V output of the boost 

SMPS and, through a 200Ω resistor, charges the capacitor. The solenoid is represent-

ed by an inductor with series resistance on the right-hand side of the diagram. A pulse 

generated by a controller such as an Arduino controls a MOSFET which, when acti-

vated, allows current to flow out of the capacitor, through the solenoid, and to ground. 

This rapid flow of current through the coil generates the strong electric field needed to 

kick the ball. The diode is necessary to carry any unexpected current generated by the 

inductor. 
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Simulations were carried out to explore the various voltages and currents during oper-

ation. A few of the resulting graphs are shown below. 

 

 
 

The above graph shows the control signal produced by the controller. It is simply a 

5V pulse lasting for 0.2s. 

 

 
 

This graph shows the voltage across the capacitor. At power-up, it takes around 40s to 

fully charge to 60V. Each time the solenoid is triggered, the voltage drops to 28V, and 

requires around 20s to fully recharge. Using the equation mentioned previously, this 

corresponds to a release of approximately 45J. The actuator assembly consists of a 

coil of wire wrapped around a plastic tube. As current flows through the coil, a mag-

netic field is generated. This can be used to push a steel rod, discussed in a later sec-

tion. The entire tube is then encased in a steel housing to concentrate the magnetic 

field and produce a more powerful kick. The images below show the design for the 

actuator assembly. 

 

 

This diagram shows the dimensions of the coil holder and cylindrical shell. The hol-

low white tube in the middle is made of plastic, as to not impede the magnetic field in 

any way. This then has a copper coil wound around it. On the outside is a steel tube to 

contain the magnetic field. Within each of the end caps is a low friction bearing that 

allows the rod that will sit in the middle to slide more efficiently. Holes in the corner 

of these caps allow threaded rods to pass through to screw the whole assembly to-

gether. The plunger is the rod that sits inside of the actuator and moves to kick the 

ball. It consists of a plastic part at the front, and an iron part at the back. The plastic 

section has an M3 thread drilled into it. The iron section has an M3 threaded rod on 
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each end. This allows the two sections to seamlessly screw together and allows a set 

of washers to be screwed onto the end. 

 

 

 

Initially the plastic section lies inside of the actuator and the iron section sticks out the 

back. When a current flows through the coil, a magnetic field is generated. This at-

tracts the iron rod into the actuator, and therefore pushes the plastic section out of the 

front, pushing it into the ball. Based on research, we expect the efficiency of energy 

transferred to the ball to be around 5%. Given the simulations show a total of 45J is 

discharged from the capacitor per kick, this corresponds to 2.25J transferred as kinetic 

energy to the ball. Given a ball of 0.5kg, with a kinetic energy of 2.25J, we expect a 

final kicking velocity of around 3ms-1. 

7 Omnidirectional Camera 

We needed a camera system that could give the main computer an idea of what each 

robot can see. We observed other designs for omnidirectional systems and followed 

suit by designing a reflective cone which can reflect light onto one point, where we 

can place our camera. This allows one camera to get a 360 view of each robot, with-

out the extra image processing if we were to use multiple cameras per robot. The cone 

would be mounted upside-down with the camera pointing up to allow the camera to 

maximize the useful field of view. We had to choose an angle for the slope of the 

cone. A large angle would mean a steeper cone, therefore increasing the distance we 

could see but at the same time, reducing the amount we could see at close range. Oth-

er teams have dealt with this issue by having multiple angles on different parts of the 

cone, however this would add complexity and was not feasible for us, a new team. 

We opted for an angle of 36 degrees as this would give a good balance between close 

range and long range, while maximizing the surface area of the cone dedicated to 

medium range reflections. We then fabricated our design by using a lathe to cut an 

aluminum rod with 82mm diameter. The top layer was cut, leaving the pointy tip. The 

cone was then flipped so we could hollow the cone, reducing overall weight. 
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This design was then sanded and polished to give a mirror finish so the camera could 

accurately capture the environment. 

8 Image Processing 

An excellent and cost-effective way of achieving 360° vision was to use a static cam-

era and pointing at an apex-down conical mirror. The image was “unwrapped” using a 

function which mapped pixels to distances from the center proportional to the actual 

distance of the object. (Inverses of functions with several trigonometric terms needed 

to be computed. This was done through a symbolic computation program written in 

Haskell, capable of differentiating formulas, to generate the Taylor approximation of 

the inverse). Each frame of the video can simply run through the function and come 

out undistorted. After the image is “unwrapped” it is run through an object recogni-

tion system, which identifies objects based on their colors. For this purpose, the image 

is firstly transformed in the HSV (hue, saturation, value) system, which shows signifi-

cantly better results when dealing with shades of the same color. After that a black 

and white mask of the image is created by setting boundary conditions for hue, satura-

tion, and value for every pixel of the image, so that if a pixel’s properties satisfy these 

conditions, it appears white on the mask image and black otherwise. The algorithm 

creates a mask for every color used in the match to identify the boundaries of the field 

and the goals (white color), the robots (black) and which team they are on (based on 

the color of the markers on them), and the ball (its color is set before the match). 

 

 

 

Initial image from the 

camera 
Initial image from the 

camera 
Initial image from the 

camera 
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9 Conceptual Strategy 

When every robot has identified what it can see by applying several masks on the 

image from the omnidirectional camera, these bits of information can be combined to 

create a simulation of the field. The state of the game dictates what every robot should 

do next based on who possesses the ball:  

 

1) If an ally has the ball, the robots position themselves in such a way that they 

can pass the ball as frequently as possible, since the robots are lighter, hence, 

faster. This allows the team to slowly get behind the defense line to the 

goals. 

2) If an opponent has the ball, the robots position themselves to “mark” the 

closest opponent, preventing a successful pass to that robot, or blocking a di-

rect shot to the goals if the opponent dribbles the ball. 

3) If no one controls the ball, then the robot, which is the closest one to the ball, 

tries to intercept it. At the same time other robots stay in the same formation 

(defensive or offensive, as described above), which they were before a team 

lost possession of the ball. 

10 Platform Selection 

Combining ubuntu with a low power mini-pc was the best path chosen. ROS2 was 

selected as the platform of choice for its versatility and expandability. In following 

our team's design philosophy, a lightweight computer was selected, with strong inte-

grated graphics at an affordable price point and acceptable form factor. This would 

allow for competitive image processing without compromising on cost or increasing 

the height of the robots center of gravity. Using the more traditional approach of 

mounting laptops was considered but decided against because of the potential weight 

gain. 

 

We installed Ubuntu and ROS2 onto our mini pc, adding our scripts to our ROS 

workspace. We learnt ROS using the turtlesim module, allowing us to simulate our 

robot before it was ready to be tested. We also planned to use Gazebo to simulate the 

environment so that we could implement machine learning. 


