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Abstract
ERA-IITK is based out of the Indian Institute of Technology Kanpur, located
in India. We are a team of undergraduate students working towards developing
autonomous robotics solutions for challenging problems. We are the first team (to
our knowledge) from India to participate in the RoboCup MSL Challenge, and
we aim to showcase our grassroots engineering on a global stage, simultaneously
learning and having a lot of fun as a team!

1 Introduction

ERA-IITK is an autonomous robotics team founded in 2018, which originally par-
ticipated in the DJI RoboMaster AI Challenge. WE participated offline in 2019 in
Canada, achieving 3rd overall position and online in 2020 and 2022, achieving top 3
globally always. Since the competition was halted, we shifted our focus to RoboCup
MSL. Working under tight budget constraints and limited faculty support due to being
undergraduates, our design philosophy is based on cost-effectiveness and efficiency on
the hardware front and low-complexity, innovative solutions on the software front. Hav-
ing started in 2023, in less than a year we have managed to make significant progress
that makes us believe that we would be a valuable addition to the league. We also
aspire to see RoboCup Open competitions in India to further the spread of the com-
petition to enable the core idea behind the competition- to encourage active research
in the domain of autonomous robots and to allow people to witness the evolution of
this amazing technology while enjoying it at the same time.



2 Mechanical Design

Keeping in mind the constraints on Robot Size, our bot has dimensions of 50cm x
49.5cm x 75cm with a weight of 20kg. We have opted for an all-aluminum design to get
a sturdy and lightweight chassis. The bot design is divided into 3 sections as described
below.

Top Section

Middle Section

Bottom Section

Fig. 1 Figure showing full bot with sectional bifurcation

2.1 Bottom Section

In this section we have used a thick (6mm) Aluminum sheet which acts as a base for
different components and aluminum extrusion for providing support to the top struc-
ture. Industry-grade Rhino 10kgem IG52 planetary gear encoder motors are placed
rigidly on the base plate in a diagonal fashion capable of providing a high-speed motion
of 4m/s with precise holonomic drive. 100mm Omni wheels are attached to the motor
using a coupling hub lock-key mechanism. The base plate also houses the battery, dual
channel motor driver along with custom PCB for microcontroller-motor driver inte-
gration, and a custom solenoid with supporting wheels for dribbling. Details of the
kicking mechanism and dribbling mechanism are described in subsequent sections.

2.2 Middle Section

The middle section houses the dribbling mechanism, a capacitor for the kicking mech-
anism towards the back, and a custom power distribution system on a 3mm aluminum
base plate. It also acts as the base for placing the top section of the bot

2.3 Top Section

The top section is made up of aluminum extrusions and acrylic sheets. It has three
levels where acrylic sheets are used as a base as well as covers to protect the com-
ponents inside. The first level contains the Computing device (Jetson Orin NX 8GB)
and a PCB for controlling the kicking and dribbling mechanism. The second level con-
tains the Raspberry Pi 4 stack along with an ethernet switch box. Raspberry Pis are
stacked using standoffs and fixed onto the acrylic sheet covers such that 4 Pi cameras



on the 3rd level can be easily connected. Pi cameras are placed on a camera mount
such that all 4 cameras are perpendicular to each other.

2.4 Kicking Mechanism

We are using a solenoid-based linear actuator along with a thin plate that acts as a
kicker for the kicking mechanism. The thin plate has a cylindrical extrusion which is
adjusted in such a way that it provides impact to the ball towards its center of mass.
It also contains a slot to attach it to the solenoid actuator. The plate is pivoted at
the middle plate. The solenoid is powered using a 450V 2700uF capacitor. An inverter
relay is used to shift between the charging and discharging circuit.

2.4.1 Custom Solenoid

We have developed a custom solenoid having a stroke length of 5cm in a compact
form factor. For the solenoid core we designed and 3D printed a cylindrical spool-
shaped hollow cylinder having a length of 12cm, an inner diameter of 2cm, and an
outer diameter of 6cm at the ends. We then used 23 AWG wire wounded 4000 times
around the solenoid core and completed it by using a plunger of length 20cm tapered
and threaded at one end for attaching it to the kicking plate. The solenoid-actuator
system can kick a ball to a distance of 2m.

Fig. 2 Custom Solenoid attached to the bot base

2.5 Dribble Mechanism

Our dribbling system contains 2 active wheels actuated using high-speed low torque
N20 encoder motors. Two passive wheels are small trolley wheels attached in the lower
base plate for providing support to the ball during motion. Active wheels along with
the motor are mounted on a 3D-printed arm pivoted at the base which in turn is
connected to an aluminum extrusion using a shock absorber. The angle of the arm can
be adjusted by sliding the shock absorber on the aluminum extrusion, thus providing
ease of adjustability. Two base plates are designed such that they allow the ball to come
in contact with active wheels and the kicking plate. Shock absorbers allow the active
wheels to put a little pressure on the ball further increasing the ball’s maneuverability
at high speeds.

3 Electrical Design

Subsequent sections provide details about the different electrical circuits and electrical
components used in the robot.



3.1 Power Source

The robot is powered using a 20000 mAh 22.2V Li-Ion battery with a built-in battery
protection circuit. The battery can provide a continuous power supply to the bot for
30 minutes on a single charge.

3.2 Power Distribution System

We have designed and developed a custom Power distribution system for efficient
power distribution to the bot’s various components. Our PDS consists of a PCB base
on which a combination of bucks and boosts converters are placed to provide outputs
of variable voltage ratings (19.2V, 12V, 9V, 5V) while ensuring appropriate current
draw.

Fig. 3 Custom-made Power Distribution System with different XT female output ports for easy
power distribution

3.3 Custom PCBs

Apart from the Power Distribution System, we have also developed 2 more types of
PCBs for integrating and controlling different hardware components.

3.3.1 Kicking and Dribbling Mechanism Circuitry

One of the PCBs contains two Arduino Nano Microcontrollers, an 1.298 Motor driver,
and an optocoupler relay. One of the Arduino Nano is responsible for controlling
the relay to activate the charging and discharging of the capacitor for the kicking
mechanism. Another Nano controls the motors responsible for the dribbling of the ball.

3.3.2 Closed Loop Motion Circuitry

Another PCB contains an Arduino Nano microcontroller along with connectors and is
used for controlling the IG52 Motors through dual-channel motor drivers. It also takes
encoder feedback and sends it back to the Computing Device to provide a closed-loop
control.



3.4 MultiCam Vision System

Inspired by the multi-camera system implemented by the Team FALCONS, we imple-
ment a similar setup to achieve robot Omni-vision. The system comprises of four
Raspberry Pi v2 cameras (Sony IMX 219) with Fisheye lens (220 H) each connected to
a Raspberry Pi model 4B. Ethernet switch is used to form a closed network between
the four RPIs and the main Central Processing Unit (CPU) (Intel NUC Enthusi-
ast 11). We preferred a MultiCam System over a Parabolic Mirror due to its several
advantages, mainly the longer range of field view allowing an individual bot to con-
tinuously track opponent bots and gives the potential to track the ball even if it is
airborne (future work), giving an advantage to the decision module to make more
informed choices. Tracking far-away objects proved difficult in Parabolic mirrors due
to the distortion from edges. Another advantage lies in the potential for scaling, all
image processing, including object detection and tracking & sampling points from field
lines, is carried out in Raspberry Pis. This added parallelism, even if it comes with
the challenge of synchronization, we think is worth it due to the reduced load over the
main CPU and resembles the way the human anatomy works, where different level of
processing takes place at different organs to be combined at the brain.

4 Software Design

The software architecture comprises of multiple components which can be broadly
classified into separate modules running concurrently on the RPIs and Main CPU
respectively. The RPIs are responsible for extracting the relevant information from
the images, i.e. the object trajectories and Field Lines, and conveying the information
with time stamps to the main CPU, which combines them to maintain a State of the
field. All bots communicate at a regular rate to share their local state of the field from
their perspectives, and combining them leads to the World state of the field, to be
used by the Decision Module as input. The World State of the field comprises of all
the trajectories (current position and velocity) of the robots and the ball.

4.1 3-D object Tracking

We approach the 3D-Tracking Algorithm as a supervised learning problem [1] where
the aim is to find N trajectories, where N is the number of object in view and is dynamic
in nature. The algorithm receives detection from YOLOv8-tiny as input, and our task
is to match the detections to their respective trajectories and update it according to
the matched detection. Each trajectory defines the state of the object as s= P, Delta
P, fapp, where P is Position Coordinates and DeltaP stands for its velocity. Fapp is
the extracted features of the current detection and will be used to calculate similarity
score with new detections. Finally, to associate trajectories with new detections an
association score is calculated which takes into account the above similarity score &
relative depth order making the algorithm more robust towards occlusion. Recurrent
neural networks are used to update the state in the trajectory given five previous
states. Another RNN is used to extrapolate the state in the time between current and
new detection to improve the update rate of states.


https://www.falcons-robocup.nl

4.2 Self-Localization

Like other teams in the competition, we use a white field-line-based localization algo-
rithm. Our initial algorithm is based on Brainstormers’ Paper [2], on top of which
we have performed optimization and engineering at various levels. The codebase is
written in C++ for quick execution and supported by the ROS2 [3] communication
framework, tested on a Gazebo Simulation. The crux of the algorithm is extracting
the White Line points from the field using camera parameters in the frame of ref-
erence of the bot, then using some initial pose estimate and optimizing a suitable
defined loss function over the possible locations on the map where the bot could
be. We employ suitably optimized Gradient Descent with an optimizer approach
currently for loss minimization, although other methods are being evaluated by the
team for better performance.

Once the global pose estimates have been acquired, we rank them according
to their fitness and maintain a fixed number of estimates at all times, while also
introducing a small number of new estimates and removing the least fit estimates at
each time step to enable robustness. The removal criteria are based on the age of the
points, their cost, and their closeness to their top estimates. This criterion has been
derived experimentally. Each global pose is updated by the odometry received from
the motor feedback after every iteration to achieve local localization. Once we are
fairly confident of the global pose, we reduce the number of points in consideration
and the number of iterations of the algorithm to improve the pose update speed and
trust more in the odometry. This again, is experimentally verified. Problems like
sudden flipping and noise are taken care of by a Kalman Filter and care is taken to
ensure that the symmetry of the field does not cause problems. Below is an image of
the simulation testing for the localization algorithm.

Fig. 4 We can see that the cluster of points being maintained converge approximately to the same
location, which is very near to the actual location in the simulation. It must be noted that the
simulation is on a single camera, where in reality we get much more line points owing to the 4-camera
setup explained above



4.3 Controls and Motion Planning

This module forms the backbone of the gameplay. Its aim is to generate optimum
control signals ensuring efficient traversal of each bot from its initial to final position.
The codebase is written in C++ for execution speed and ROS2 [3] support. The algo-
rithm was tested using a 3D Webots [4] Simulation. Webots [4] was chosen owing to its
ease of use, scalability, popularity and open-source nature. A 2-layer control module
consisting of a Low-Level Control and Trajectory Generation Module is implemented.

The Low-Level Control deals with the actual control of each individual motors to
follow a given trajectory. As the robot has an omni-wheel drive, the kinematic model
simplifies greatly, allowing independence of angular and linear velocities. The only
constraint was provided by the motor’s maximum rotation speed and torque, setting
an upper bound for the speed and acceleration the robot can achieve. It was observed
that it is always profitable for every robot to face the ball while travelling along
its trajectory. This allows it to quickly receive or block passes. Hence, the designed
control module maintains such an orientation yet having a negligible impact on the
time taken to reach the target destination. Inspired from Thai, Ly and Dzung [5], a
gain-scheduling based 3 PID Control was established, for controlling the net speed,
normal velocity and angular velocity of the robot. The encoder feedback and the
localisation module input was used to evaluate and minimise the error. The inverse
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design the controller, where a, b are the angle between the wheel and L is the distance
from centre to a wheel.

The high-level trajectory planner is based on the RRT* implementation provided
by OMPL [6]. When the robots senses an incoming obstacle along its trajectory, we run
its iterations for a set time duration allowing the robot to re-plan and converge to an
optimum. Since the opponent teams robot coordinates are approximately known from
the vision module in terms of a probability distribution, the necessary region is blocked
out and marked as an obstacle in the occupancy grid. The environment most of the
times remains sparse and the generated trajectories aren’t extremely complicated as
the target locations are chosen strategically for each robot. The generated trajectory
is a set of points which is then smoothed by a C2 Cubic Spline Approximation. This
trajectory is then sampled uniformly based on distance to allow the robot to follow
using a piece-wise linear model with the maximum possible speed. The figure shows
an example scenario where the above pipeline is running in the Webots simulator [4].


fig:motionplanning

Fig. 5 We can see that the robot reached its destination efficiently, re-planning dynamically, as
needed to avoid any collision

5 Communication and Data Layer

As we have mentioned several times already, most of the heavy lifting in terms of com-
munication is done by ROS2 [3]. Several nodes are run on the Central server (NUC
Enthusiast) that communicate with each other using data-types created manually for
efficient processing. The code is written in C++. The image processing is done on
the RPIs and the relevant data is transferred to the Main CPU over ethernet using
the UDP Protocol. The CPU then performs sensor fusion to fuel the algorithms of
Localization and Path planning. The low level control of the Motors is done using
Arduino Microcontrollers which are commanded directly from the CPU using ESP32
code. Developing data transfer protocols for multiple bots and their efficient commu-
nication with each other and the base station is listed as future work to be done before
the competition.

6 Conclusion

We conclude by reiterating that we are a new team trying to make our way into
the challenging and highly competitive MSL. Due to constraints on manufacturing
capabilities and budgets, we had to suffer numerous delays in the hardware-software
integration, but given our insurmountable progress in the short span of a year, and
still a few months to go for the competition, we are confident that we will be able to
complete our first iteration of robots in time and would hopefully give other teams a
good competition while learning immensely from the experience all the same.
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